Полiт.ua Государственная сеть Государственные люди Войти
20 ноября 2017, понедельник, 18:29
Facebook Twitter LiveJournal VK.com RSS

НОВОСТИ

СТАТЬИ

АВТОРЫ

ЛЕКЦИИ

PRO SCIENCE

СКОЛКОВО

РЕГИОНЫ

10 ноября 2017, 09:27

Ферромагнитный материал научились изменять с помощью лазера

Cкирмионная решетка
Cкирмионная решетка
Дмитрий Юдин

Сотрудники Университета ИТМО предложили использовать лазерное излучение для управления свойствами скирмионов – частицеподобных структур – в ферромагнитном материале. Скирмионы можно применять при проектировании менее энергозатратных, но более емких средств хранения и передачи информации. Исследования поддержаны грантом Российского научного фонда (РНФ), а их результаты были опубликованы в журнале Physical Review Letters, кратко о них рассказывает пресс-релиз РНФ.

 «Мы показали, что характерные линейные размеры, устойчивость и форму скирмиона можно контролировать с помощью внешнего электромагнитного поля, например, линейно поляризованного лазерного излучения – излучения, в котором вектор напряженности электрического поля колеблется в некотором направлении, перпендикулярном направлению распространения электромагнитного поля», – рассказал один из авторов статьи Дмитрий Юдин, руководитель проекта, PhD, научный сотрудник Международной научной лаборатории фотопроцессов в мезоскопических системах Университета ИТМО.

Авторы отмечают, что обнаруженный ими эффект может применяться в спинтронике (в данном случае – в скирмионике). Спинтроника как прикладное направление исследований зародилась в конце 1980-х годов как альтернатива зарядовой электронике. Использование спинового, а не зарядового тока для передачи и обработки информации является краеугольным камнем этой технологии. В устройствах молекулярной спинтроники битом информации является уже не домен, который состоит из множества молекул, а всего лишь одна молекула. Таким образом плотность записи информации повышается в 10-15 раз. Поэтому с помощью принципов спинтроники можно гораздо эффективнее записывать информацию на жесткие диски, создавать новые транзисторы, элементы логики и ячейки памяти.

В ходе работы авторы рассмотрели модель ферромагнитного материала, который представлял собой один слой однородного вещества. Магнитный порядок – это явление, при котором магнитные моменты (векторы) атомов в материале имеют строго определенные направления. Если все векторы направлены в одну сторону, такой порядок называют ферромагнитным, а материал – ферромагнетиком. К ферромагнитным материалам относятся, например, металлы кобальт (Co), никель (Ni) и гадолиний (Gd). Также существует антиферромагнитный порядок, при котором магнитные моменты соседних атомов направлены в противоположные стороны. При этом ферромагнетики обладают намагниченностью даже в отсутствии внешнего магнитного поля, а антиферромагнетики таким свойством не обладают и поэтому считаются слабыми магнитами.

Изначально предполагалось, что в изучаемом слое отсутствует центр инверсии, то есть его внутренняя структура несимметрична относительно замены знаков всех координат на противоположные. Отсутствие центра инверсии приводит к появлению сильного спин-орбитального взаимодействия, то есть взаимодействия между движущейся частицей и ее собственным магнитным моментом, связанным с наличием у частицы спина — вращения частицы вокруг своей оси (но не перемещения ее как целого).

При сильном спин-орбитальном взаимодействии в магнитных материалах появляются сложные спиновые текстуры – скирмионы. Это конфигурации (скопления) магнитных моментов, которые частицей не являются, но по строению подобны ей. Они не принадлежат ни к ферромагнитному, ни к антиферромагнитному порядкам, потому что их магнитные моменты ни параллельны, ни антипараллельны. Скирмионы образуют комбинацию в виде диска с рядами спинов. В центре спин ы направлены вниз, а у краев — вверх. Все спины, находящиеся посередине, являются промежуточными состояниями: если взять по спину из каждого ряда и посмотреть на их расположение, то видно, что они описывают полный круг.

«Хорошо известно, что в магнитных материалах без центра инверсии возможно появление частицеподобных структур скирмионов. Последние могут найти широкое применение в проектируемых устройствах энергонезависимой памяти. В сравнении с устройствами на магнитных доменах в ферромагнитных материалах управление скирмионами как источниками информации требует существенно меньших пороговых значений тока. Использование же внешнего электромагнитного излучения, например, лазера, открывает широкие перспективы для возможности манипулировать отдельными скирмионами в ферромагнитных системах», — заключил ученый.

Работа проходила в сотрудничестве с ученым из Университета Неймегена (Нидерланды).

Обсудите в соцсетях

Система Orphus
Loading...
Подпишитесь
чтобы вовремя узнавать о новых спектаклях и других мероприятиях ProScience театра!
3D Apple Big data Dragon Facebook Google GPS IBM iPhone MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi Адыгея Александр Лавров альтернативная энергетика Анастасия Волочкова «Ангара» антибиотики античность археология архитектура астероиды астрофизика аутизм Байконур бактерии бедность библиотека онлайн библиотеки биология биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера бозон Хиггса британское кино Византия визуальная антропология викинги вирусы Вольное историческое общество Вселенная вулканология Выбор редакции гаджеты генетика география геология геофизика глобальное потепление грибы грипп дельфины демография дети динозавры Дмитрий Страшнов ДНК Древний Египет естественные и точные науки животные жизнь вне Земли Западная Африка защита диссертаций землетрясение змеи зоопарк зрение Иерусалим изобретения иммунология инновации интернет инфекции информационные технологии искусственный интеллект ислам историческая политика история история искусства история России история цивилизаций История человека. История институтов исчезающие языки карикатура католицизм квантовая физика квантовые технологии КГИ киты климатология комета кометы компаративистика компьютерная безопасность компьютерные технологии космический мусор космос криминалистика культура культурная антропология лазер Латинская Америка лексика лженаука лингвистика Луна мамонты Марс математика материаловедение МГУ медицина междисциплинарные исследования местное самоуправление метеориты микробиология Минобрнауки мифология млекопитающие мобильные приложения мозг моллюски Монголия музеи НАСА насекомые неандертальцы нейробиология неолит Нобелевская премия НПО им.Лавочкина обезьяны обучение общество О.Г.И. онкология открытия палеолит палеонтология память папирусы паразиты педагогика планетология погода подготовка космонавтов популяризация науки право преподавание истории продолжительность жизни происхождение человека Протон-М психоанализ психология психофизиология птицы РадиоАстрон ракета растения РБК РВК РГГУ регионоведение религиоведение рептилии РКК «Энергия» робототехника Роскосмос Роспатент русский язык рыбы сердце сериалы Сингапур сланцевая революция смертность СМИ Солнце сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры торнадо транспорт ураган урбанистика фармакология Фестиваль публичных лекций физика физиология физическая антропология финансовый рынок фольклор химия христианство Центр им.Хруничева школа школьные олимпиады эволюция эволюция человека экология эмбриональное развитие эпидемии этика этнические конфликты этология Юпитер ядерная физика язык

Редакция

Электронная почта: politru.edit1@gmail.com
Адрес: 129090, г. Москва, Проспект Мира, дом 19, стр.1, пом.1, ком.5
Телефон: +7 495 980 1894.
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003г. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2014.