29 марта 2024, пятница, 13:44
TelegramVK.comTwitterYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

13 ноября 2006, 22:10

Научное сообщество против Академии

Вот уже 105 лет каждый год осенью весь научный мир с нетерпением ждет новостей из Королевской академии наук в Стокгольме. Именно там принимаются решения о присуждении Нобелевских премий. Знак признания заслуг ученого перед человечеством, высшая оценка достижений в области физики, химии, биологии и медицины...

Защищенные сложной системой отбора кандидатов, выборы проходят в обстановке строгой секретности и материалы по ним становятся доступны историкам лишь через 50 лет после принятия решений. Отбор кандидатов начинается с первоначального списка, составляемого на основе номинаций, которые могли подавать, главным образом, члены Королевской академии наук Швеции, члены Нобелевских комитетов, бывшие Нобелевские лауреаты, профессора университетов Швеции и других скандинавских стран и некоторые другие лица по выбору академии. Позже к ним добавились и другие категории номинаторов, но в начале XX века дела обстояли несколько проще. Из этого списка выбирают более короткий (в наши дни даже этот более короткий список может насчитывать сотни кандидатов), после чего бумаги каждого из кандидатов отсылают внешним экспертам. Наконец, все отзывы экспертов снова поступают в соответствующие Нобелевские комитеты, которые и должны принять окончательное решение.

85 лет назад, в 1921 г. ни у кого не было сомнений в том, кто именно должен получить Нобелевскую премию по физике. Премия 1920 г. ко всеобщему удивлению уже ушла к одному малоизвестному швейцарскому физику. Имя Альберта Эйнштейна снова было у всех на устах. Да и сам Эйнштейн был практически уверен в том, что его ждет успех. Еще в 1919 г., оформляя развод со своей первой женой, Милевой Марич, он передавал ей все права на премию, которую он «в конце-концов» должен получить. Однако Академия не дрогнула. Ноябрь 1921 г. прошел в тягостном молчании. Нобелевская премия 1921 г. по физике не была присуждена никому.

Удивительный год

Для того, чтобы понять, что так удивило мировую общественность в ноябре 1920 и 1921 гг., нам надо погрузиться еще на 15 лет в прошлое.

В 1905 г. 26-летний клерк патентного бюро Альберт Эйнштейн (1879—1955) опубликовал несколько статей, которые совершили настоящий переворот в физике. Позже этот год получил название annus mirabilis — удивительный год. Влияние эйнштейновских статей 1905 г. на развитие науки в XX веке было столь значительно, что, в ознаменование столетия этого события, 2005 г. был объявлен «Всемирным годом физики».

В этих работах Эйнштейн объяснил вещи, многие из которых, хотя бы на уровне названий, известны сейчас каждому образованному человеку.

В статье «Об одной эвристической точке зрения касательно порождения и превращения света» Эйнштейн объяснил явление фотоэлектрического эффекта: вырывание электронов из металлов под действием облучения. Объяснение было связано с предположением о том, что свет состоит из отдельных частиц, так называемых квантов (это понятие было предложено пятью годами раньше Максом Планком), энергия которых связана с частотой электромагнитного излучения. Чем выше частота, тем больше энергии несут в себе частицы. Электроны, поглощая кванты, могут приобретать столь высокую энергию, что вырываются за пределы поверхности кристаллической решетки. Позже этот эффект нашел себе обширное поле для практического применения в фотоэлементах. Имя частицам света нашлось лишь несколько лет спустя. Сегодня они известны нам под названием фотонов.

В статье «О следующем из молекулярно-кинетической теории теплоты движении частиц, взвешенных в покоящихся жидкостях» он дал объяснение феномену Броуновского движения. Открытое ботаником Робертом Броуном (1773–1858) в 1827 г. «приплясывание» мелких частиц, взвешенных в жидкостях, долгое время рассматривалось как любопытный курьез, и для него даже было разработано математическое описание, но именно Эйнштейн превратил его в доказательство атомного строения вещества. Важно помнить, что в 1905 г. мир очевидностей был другим. Нам, учившимся по учебникам физики конца XX — начала XXI века, эти сомнения могу показаться забавными, но многие физики и химики сто лет назад еще не верили в реальность атомов, считая их не более, чем удобной абстракцией, придуманной для объяснения некоторых экспериментальных феноменов.

Наконец, в вышедшей в июне 1905 г. статье «К электродинамике движущихся тел» были изложены основы специальной теории относительности. В ней описывались проблемы наблюдателя, движущегося с большими скоростями относительно наблюдаемых им объектов, которое, в связи с постоянством предельной скорости света, вызывало неизбежные проблемы с оценкой одновременности событий, линейных размеров и массы тел, заставляя вводить в измерения так называемые релятивистские поправки.

Физики довольно быстро распознали значение этих работ, и в Нобелевский комитет потек тонкий ручеек номинаций. Этот ручеек стал еще шире, когда к 1915 г. Эйнштейну удалось разработать общую теорию относительности, включившую в себя и новое истолкование гравитации.

Нобелевский комитет оказался в неудобной ситуации. Несмотря на явную значимость достижений, Эйнштейн во многом отличался от представления об идеальном кандидате. Он был теоретиком, а не экспериментатором. Непосредственная польза от его «изобретений» при всем величии замысла была крайне сомнительной. Наконец, Эйнштейн меньше всего соответствовал образу кабинетного ученого, оторванного от всего земного, по крупицам собирающего эмпирические зерна абсолютной истины. Его активная пацифистская позиция в годы первой мировой войны, когда самые светлые умы были помутнены националистическим и милитаристским дурманом (германские профессора, например, считали войну исполнением культуртрегерской миссии германского народа), открытые симпатии к левым, отказ от Германского гражданства, наконец, не в последнюю очередь, еврейские корни... Все это вызывало настороженность и неприятие в германоязычном научном сообществе, на окраине которого находилась маленькая Швеция.

Полное затмение

1919 г. стал переломным. 29 мая 1919 г. английский астроном Артур Эддингтон (1882—1944) сумел организовать решающие наблюдения, подтвердившие важные положения общей теории относительности. Он предположил, что, если теории Эйнштейна верны, и тела большой массы действительно способны искривлять пространство, то это искривление можно будет обнаружить, наблюдая за прохождением света от точечных источников вблизи тел большой массы. Беда была только в одном. На Земле не было ни нужных расстояний, ни тел достаточной массы, которые породили бы заметное искривление пространства. На счастье, поблизости от Земли имелась природная экспериментальная установка. Роль точечных источников света могли сыграть звезды, роль массивного тела — Солнце. Оставалась одна проблема. Солнечные лучи рассеиваются в атмосфере Земли, и наблюдение звезд, находящихся вблизи солнечного диска, невозможно. Для того, чтобы пронаблюдать их, необходимо всего-навсего «погасить» Солнце. Каждый астроном знает, как это сделать. Достаточно дождаться солнечного затмения. Луна способна полностью загородить солнечный диск и предоставить уникальные возможности для наблюдения. Полное солнечное затмение удается наблюдать не везде, поэтому ради его наблюдения были направлены экспедиции в Бразилию и на Принсипи, остров близ западного берега Африки. Во время полного солнечного затмения, длившегося всего шесть минут, сотрудники экспедиций Эддингтона успели замерить координаты звезд, находившихся вблизи Солнца.

6 ноября 1919 г. после долгих расчетов и проверок Эддингтон обнародовал результаты наблюдений. Координаты звезд, замеренные им, отличались от обычных на величину, предсказанную согласно общей теории относительности. Эйнштейн буквально проснулся знаменитым. Уже 7 ноября Лондонская «Таймс» вышла с огромными заголовками «Революция в науке — Новая теория вселенной — Ньютоновские идеи повержены». «Нью-Йорк Таймс» откликалась 10 ноября: «Свет весь скривился в небесах! Ученые мужи пребывают в волнении по поводу результатов наблюдения за затмением. Теория Эйнштейна торжествует. Звезды не там, где кажутся и не там, где они должны быть по расчетам, но никому нет нужды волноваться. Книга для двенадцати мудрецов: не более — столько людей во всем мире могли бы понять ее, сказал Эйнштейн, передавая ее своим отважным издателям».

Эйнштейн был нарасхват. Его приглашали с лекциями в университеты всего образованного мира, от США до Японии.

Все это не тронуло Нобелевский комитет. Несмотря на то, что Эйнштейна снова номинировали, премия 1920 г. была присуждена швейцарскому физику Шарлю Эдуару Гийому (1861—1938), который создал высокоинертные никелевые сплавы с аномально низким коэффициентом температурного расширения. Инвар и элинвар, созданные им, оказались необычайно ценны для изготовления прецизионных некорродирующих измерительных инструментов и хронометров, защищенных от намагничивания. Научное сообщество осталось в глубоком недоумении.

Фотоэлектрический эффект

Напряжение росло. Наступил 1921 г. Эйнштейна снова номинировали и снова в связи с теорией относительности. Других достойных кандидатов не было. На пути к Нобелевской премии, как и раньше, встал один из влиятельных членов Нобелевского комитета, офтальмолог Альвар Гульстранд.

Альвар Гульстранд (1862—1930) был не просто экстравагантным консервативным специалистом по глазным болезням. Ему принадлежала Нобелевская премия 1911 г. по физиологии и медицине. В 1894 г., после обучения в Упсале и Вене и практики в Стокгольме, он занял первую в Швеции кафедру глазных болезней в Упсальском университете. С 1914 г. он перешел на созданную специально для него кафедру Физической и физиологической оптики, которую занимал до выхода в отставку с получением звания заслуженного профессора в 1927 г. Альвар Гульстранд был талантливым физиком-самоучкой, основные интересы которого лежали в области преломления света в сложных оптических системах. Результатом его физических штудий стала теория преломления света в человеческом глазу и формирования изображения на сетчатке, охватывавшая как нормальное строение глаза, так и патологические изменения, включая астигматизм. На основании этой теории он усовершенствовал диагностическое оборудование и коррекционные линзы, способные компенсировать повреждение хрусталика в результате удаления катаракты. Многие из его работ по оптике глаза были отмечены национальными премиями. С 1911 по 1929 г. он был членом Нобелевского комитета по физике (с 1922 — его председателем).

Гульстранд, знаток классической геометрической оптики, имел собственное мнение по поводу как специальной, так и общей теории относительности. Он изо всех сил сопротивлялся присуждению Нобелевской премии Эйнштейну. Историк Роберт Фридман приводит слова Гульстранда, записанные в дневнике одного шведского математика: «Эйнштейн не должен получить Нобелевскую премию, даже если этого требует весь мир!» В результате его энергичного протеста, премия 1921 г. осталась в премиальном фонде.

Она вообще, возможно, так и не была бы присуждена Эйнштейну, если бы не другой шведский физик, профессор Упсальского университета, Карл Вильгельм Озеен (1879—1944). Его собственный вклад в науку был ограничен довольно специфической областью. Хотя его «Теория жидких кристаллов», опубликованная в 1933 г. в трудах Фарадеевского общества, до сих пор цитируется в специальной литературе, он мало известен за пределами узкого круга специалистов. Однако как профессор одного из университетов Швеции он мог принять участие в процессе номинирования кандидатов.

Как это часто бывает, Озеен искал решения для совсем другой «премиальной проблемы», но на этом пути ему посчастливилось найти нужную формулировку. Озеен собирался номинировать на премию Нильса Бора (1885—1962). Бор также был теоретиком и как физик-теоретик имел мало шансов в прагматически ориентированном Нобелевском комитете. Однако, связав вместе эйнштейновское объяснение фотоэффекта и боровскую модель атома водорода, Озеен создал замечательный тандем, противостоять которому было невозможно. Вместе они смотрелись как удачно дополняющие друг друга теории о строении вещества, прочно стоящие на солидном экспериментальном основании.

Судьба имеет странное, глубоко ироническое чувство юмора. Теория фотоэффекта представляет собой замечательную аллегорию на судьбу Нобелевской премии Эйнштейна. Как известно, нарастание интенсивности светового потока само по себе не может придать вылетающим электронам большую энергию. Для этого важна лишь частота излучения, поскольку именно с ней связана энергия квантов света — фотонов, поглощаемых электронами. Электрон может поглотить фотон подходящей энергии и перейти на более высокую орбиталь, а то и вообще покинуть атом, либо, если энергия фотона недостаточна, просто «не заметит» его. Вырваться в Нобелевские лауреаты Эйнштейну помог не рост числа номинаций, а то, что Озеен нашел верную формулировку, подобрал нужную частоту.

10 ноября 1922 г. было объявлено, что премия за 1921 г. присуждается Эйнштейну «за его заслуги в области теоретической физики, и в особенности, за объяснение фотоэлектрического эффекта». Одновременно с задержавшейся премией Эйнштейна, премия 1922 г. была присуждена Нильсу Бору «за его заслуги в исследовании строения атомов и излучения, испускаемого ими». Эйнштейн не приехал на церемонию вручения премии и традиционная застольная речь на банкете была зачитана от его имени представителем Германии, М. Надольны. Сам Эйнштейн в это время находился на пути в Японию, где ждали его лекций. О теории относительности. Не о фотоэлектрическом эффекте.

Короллярий

Вся эта давняя история, возможно, была бы не более, чем очередным занимательным историческим анекдотом, если бы не одно обстоятельство. В ней в очередной виден пример столкновения мнений международного научного сообщества и национальной академии.

Когда я писал эту заметку, то не думал о том, чтобы умалить заслуги Нобелевского комитета по созданию сложной системы оценки вклада ученых в развитие науки, или доказать, что члены Нобелевского комитета бывают необъективны и способны действовать по велению своих политических пристрастий или консервативных научных предубеждений. Однако мне кажется важным, что в этом, как и во многих других случаях, правда оказалась на стороне международного научного сообщества.

В постоянных дискуссиях о судьбах науки в современной России, нам, возможно, не мешало бы иногда не только оглядываться по сторонам, но и заглядывать в прошлое. Пусть скептики говорят, что его уроки никого ничему не учат. История учит тех, кто хочет у нее чему-то научиться. Мораль с историей Нобелевской премии Эйнштейна состоит в том, что в оценке вклада ученых в науку следовало бы опираться не на ведомственные, а на международные стандарты. Замкнутое национальное сообщество ученых, отгораживающееся от всего мира, умеет делать только одно — закосневать в своих заблуждениях. Случайный перевес консерваторов в академии может на долгие годы закрыть дорогу новым веяниям, если не ограничить ее произвол мощным противовесом. Весь вопрос в том, как услышать мнение сообщества, голос ученого народа, рассеянного по всему миру.

Скоро, через каких-то полтора месяца, заканчивается срок выдвижения кандидатов на Государственную премию. Найдет ли российское научное сообщество своих Эйнштейнов (как когда-то надеялось взрастить Платонов и Невтонов)? Или ограничится Гийомами? Не потребуется ли помощь хитроумного Озеена образца 2006 г.?

Ссылки

Обстоятельства этого дела уже неоднократно становились предметом исследования историков. Две наиболее значимые работы, основанные на изучении архивов Нобелевского фонда, принадлежат профессорам Роберту Фридману из Осло и Аанту Эльзинге из Гетеборга.

Здесь даны ссылки на тексты, которые можно прочесть прямо в сети.

Редакция

Электронная почта: polit@polit.ru
VK.com Twitter Telegram YouTube Яндекс.Дзен Одноклассники
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2024.